A note on A094061

Peter Bala, Feb 132022

$a(n)=$ the number of n-moves paths of a king starting and ending at the origin of an infinite chessboard.

We say that a sequence $(s(n))_{n \geq 1}$ has the Gauss property if the congruences

$$
s\left(n p^{k}\right) \equiv s\left(n p^{k-1}\right)\left(\bmod p^{k}\right)
$$

hold for all prime p and positive integers n and k.
We show that A094061 has the Gauss property. We require the following result

$$
\begin{equation*}
a(n)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} T(k)^{2} \tag{1}
\end{equation*}
$$

contributed by Seiichi Manyama. Here $T(n)=\operatorname{A002426(n)}$ denotes the n-th central trinomial number. In words, (1) says that $a(n)$ is the inverse binomial transform of $T(n)^{2}$.

We also need the following result [1]: given an integer sequence $(s(n))_{n \geq 1}$, there exists a unique formal power series $G(x)=1+g_{1} x+g_{2} x^{2}+\cdots$, with rational coeffcients g_{i}, such that $s(n)=\left[x^{n}\right] G(x)^{n}$ for $n \geq 1$. Then we have
(A) the coefficients of $G(x)$ are integers iff the sequence $(s(n))_{n \geq 1}$ has the Gauss property.

The central trinomial number $T(n)$ is defined as $T(n)=\left[x^{n}\right]\left(1+x+x^{2}\right)^{n}$. Hence, by (A), the sequence $(T(n))$ has the Gauss property. Clearly, the sequence $\left(T(n)^{2}\right)$ then also has the Gauss property. It follows from (A) that there is a power series with integer coefficients, $H(x)$ say, such that $T(n)^{2}=\left[x^{n}\right] H(x)^{n}$. It is straightforward to see using (1) that

$$
a(n)=\left[x^{n}\right](H(x)-x)^{n}
$$

and, since the power series $H(x)-x$ has integer coefficients, a final application of (A) shows that the sequence $(a(n))$ has the Gauss property.

Calculation suggests that in fact A094061 satisfies the stronger supercongruences $a\left(n p^{k}\right) \equiv a\left(n p^{k-1}\right)\left(\bmod p^{2 k}\right)$ for all prime $p \geq 5$ and positive integers n and k.
[1] Peter Bala, Notes on A156894

