login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094061 Number of n-moves paths of a king starting and ending at the origin of an infinite chessboard. 21
1, 0, 8, 24, 216, 1200, 8840, 58800, 423640, 3000480, 21824208, 158964960, 1171230984, 8668531872, 64574844048, 483114856224, 3630440899800, 27379154692032, 207172490054816, 1572194644061184, 11962847247681616, 91242602561647680, 697438669619791008 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The chessboard here is the full four-quadrant board Z X Z.
This is an analog of A054474 for walks on a square grid where the steps can be made diagonally as well.
a(n) is the constant term in the expansion of ((x + 1/x) * (y + 1/y) + x^2 + 1/x^2 + y^2 + 1/y^2)^n. - Seiichi Manyama, Nov 03 2019
REFERENCES
D. Joyner, "Adventures in Group Theory: Rubik's Cube, Merlin's Machine and Other Mathematical Toys", Johns Hopkins University Press, 2002, pp. 79
LINKS
Peter Bala, A note on A094061
FORMULA
D-finite with recurrence (n+1)^2*a(n+1) = n*(5*n+1)*a(n) + 2*(15*n^2+6*n-5)*a(n-1) - 8*(5*n^2-23*n+21) *a(n-2) - 64*(n-2)^2*a(n-3).
G.f.: (2/(Pi*(1+4*x))) * EllipticK(4*sqrt(x*(1+x))/(1+4*x)) = 1/(1+4*x) * hypergeom([1/2,1/2], [1], 16*(x*(1+x))/(1+4*x)^2). - Sergey Perepechko, Jan 15 2011
a(n) ~ 2^(3*n+1)/(3*Pi*n). - Vaclav Kotesovec, Aug 16 2013
a(n) = (1/Pi^2) * Integral_{y = 0..Pi} Integral_{x = 0..Pi} (2*cos(x) + 2*cos(y) + 4*cos(x)*cos(y))^n dx dy. - Peter Bala, Feb 14 2017
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^2. - Seiichi Manyama, Oct 29 2019
From Peter Bala, Feb 08 2022: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the stronger congruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 5 and positive integers n and k. (End)
a(n) = Sum_{j = 0..n} Sum_{k = 0..j} binomial(2*j,j)^2*binomial(j,k)* binomial(n+j-k,2*j)*(-4)^(n-j-k). - Peter Bala, Mar 19 2022
MAPLE
a:=array(0..30):a[0]:=1:a[1]:=0:a[2]:=8:a[3]:=24:for n from 3 to 29 do a[n+1]:= (n*(5*n+1)*a[n]+2*(15*n^2+6*n-5)*a[n-1]-8*(5*n^2-23*n+21)*a[n-2]-64*(n-2)^2*a[n-3])/(n+1)^2: print(n+1, a[n+1]) od:
# second Maple program
a:= proc(n) option remember; `if`(n<3, (n-1)*(9*n-2)/2,
((n-1)*(3*n-1)*(3*n-4) *a(n-1)
+(108*n^3-396*n^2+452*n-152) *a(n-2)
+32*(3*n-2)*(n-2)^2 *a(n-3))/ (n^2*(3*n-5)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
a[n_]:=Module[{f=(x+x^-1+y+y^-1+x y+x^-1y+x^-1y^-1+x y^-1)^n, s}, s=Series[f, {x, 0, 0}, {y, 0, 0}]; SeriesCoefficient[s, {0, 0}]] - Armin Vollmer (Armin.Vollmer(AT)kabelleipzig.de), May 01 2006
CoefficientList[Series[1/(1+4*x)*LegendreP[-1/2, 1-32*x*(1+x)/(1+4*x)^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 16 2013 *)
PROG
(Maxima)
a[0]:1$
a[1]:0$
a[2]:8$
a[3]:24$
a[n]:=((n-1)*(3*n-1)*(3*n-4) *a[n-1]
+(108*n^3-396*n^2+452*n-152) *a[n-2]
+32*(3*n-2)*(n-2)^2 *a[n-3])/ (n^2*(3*n-5))$
A094061(n):=a[n]$
makelist(A094061(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(PARI) {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^2)} \\ Seiichi Manyama, Oct 29 2019
(PARI) {a(n) = polcoef(polcoef(((x+1/x)*(y+1/y)+x^2+1/x^2+y^2+1/y^2)^n, 0), 0)} \\ Seiichi Manyama, Nov 03 2019
CROSSREFS
Row 2 of A327751.
Sequence in context: A226962 A221784 A052656 * A182589 A002268 A050893
KEYWORD
nonn,easy
AUTHOR
Matthijs Coster, Apr 29 2004
EXTENSIONS
More terms from and entry improved by Sergey Perepechko, Sep 06 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 11:31 EDT 2024. Contains 371792 sequences. (Running on oeis4.)