

A094027


Expansion of x(1+100x)/((1x^2)(1100x^2)).


1



0, 1, 100, 101, 10100, 10101, 1010100, 1010101, 101010100, 101010101, 10101010100, 10101010101, 1010101010100, 1010101010101, 101010101010100, 101010101010101, 10101010101010100, 10101010101010101
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The expansion of x(1+kx)/((1x^2)(1kx^2)) has a(n)=k^((n+1)/2)/(2(sqrt(k)1))(sqrt(k))^(n+1)/(2(sqrt(k)+1))(1)^n/2(k+1)/(2(k1))


LINKS

Table of n, a(n) for n=0..17.
Index entries for linear recurrences with constant coefficients, signature (0,101,0,100).


FORMULA

a(n)=2^n*5^(n+1)((1)^n/11+1/9)(1)^n/2101/198


CROSSREFS

Cf. A075427, A094025, A080610 (interpreted as binary), A094026.
Sequence in context: A178530 A063010 A215022 * A204582 A204583 A092633
Adjacent sequences: A094024 A094025 A094026 * A094028 A094029 A094030


KEYWORD

easy,nonn


AUTHOR

Paul Barry, Apr 22 2004


STATUS

approved



