login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094006 a(1) = a(2) = 1; for n > 1, a(n+1) = largest integer k such that the word a(1)a(2)...a(n-1) is of the form xy^k for words x and y (where y has positive length), i.e., the maximal number of repeating blocks at the end of the sequence so far. 0
1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 4, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 4, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 4, 1, 2, 2, 2, 2, 3, 4, 1, 2, 2, 2, 2, 3, 4, 2, 3, 1, 1, 1, 2, 3, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..101.

F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.

F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].

Index entries for sequences related to curling numbers

CROSSREFS

Cf. A090822.

Sequence in context: A100619 A211984 A275471 * A208879 A179617 A140188

Adjacent sequences:  A094003 A094004 A094005 * A094007 A094008 A094009

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, May 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 13:33 EST 2019. Contains 329230 sequences. (Running on oeis4.)