%I #11 Aug 14 2018 21:01:32
%S 0,0,0,0,3,196,3784,49824,577247,6250795,64725830,651790197,
%T 6443528078,62906425823,608875308314,5858471079330,56139508762734,
%U 536478118777779
%N Number of prime pairs below 10^n having a difference of 48.
%H Siegfried "Zig" Herzog, <a href="http://zigherzog.net/primes/index.html#compare">Frequency of Occurrence of Prime Gaps</a>
%H T. Oliveira e Silva, S. Herzog, and S. Pardi, <a href="http://dx.doi.org/10.1090/S0025-5718-2013-02787-1">Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18</a>, Math. Comp., 83 (2014), 2033-2060.
%e a(5) = 3 because there are 3 prime gaps of 48 below 10^5.
%Y Cf. A007508, A093977, A093979.
%K nonn,more
%O 1,5
%A _Enoch Haga_, Apr 24 2004
%E a(10)-a(13) from _Washington Bomfim_, Jun 22 2012
%E a(14)-a(18) from S. Herzog's website added by _Giovanni Resta_, Aug 14 2018