%I #11 Aug 14 2018 21:01:13
%S 0,0,0,0,4,155,2326,29327,334720,3580023,36721672,366906343,
%T 3604148124,34997285167,337195587089,3231721755068,30863065190469,
%U 294053775100845
%N Number of prime pairs below 10^n having a difference of 46.
%H Siegfried "Zig" Herzog, <a href="http://zigherzog.net/primes/index.html#compare">Frequency of Occurrence of Prime Gaps</a>
%H T. Oliveira e Silva, S. Herzog, and S. Pardi, <a href="http://dx.doi.org/10.1090/S0025-5718-2013-02787-1">Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18</a>, Math. Comp., 83 (2014), 2033-2060.
%e a(5) = 4 because there are 4 prime gaps of 46 below 10^5.
%Y Cf. A007508, A093976, A093978.
%K nonn,more
%O 1,5
%A _Enoch Haga_, Apr 24 2004
%E a(10)-a(13) from _Washington Bomfim_, Jun 22 2012
%E a(14)-a(18) from S. Herzog's website added by _Giovanni Resta_, Aug 14 2018