%I #11 Aug 14 2018 21:01:07
%S 0,0,0,0,5,202,2779,34881,389634,4106969,41731672,414087760,
%T 4043811134,39077574251,374986732902,3581487844657,34101194196910,
%U 324058813028738
%N Number of prime pairs below 10^n having a difference of 44.
%H Siegfried "Zig" Herzog, <a href="http://zigherzog.net/primes/index.html#compare">Frequency of Occurrence of Prime Gaps</a>
%H T. Oliveira e Silva, S. Herzog, and S. Pardi, <a href="http://dx.doi.org/10.1090/S0025-5718-2013-02787-1">Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18</a>, Math. Comp., 83 (2014), 2033-2060.
%e a(5) = 5 because there are 5 prime gaps of 44 below 10^5.
%Y Cf. A007508, A093975, A093977.
%K nonn,more
%O 1,5
%A _Enoch Haga_, Apr 24 2004
%E a(10)-a(13) from _Washington Bomfim_, Jun 22 2012
%E a(14)-a(18) from S. Herzog's website added by _Giovanni Resta_, Aug 14 2018