%I #12 Aug 14 2018 21:00:57
%S 0,0,0,0,19,476,7180,86637,954456,9919519,99655858,979052296,
%T 9484975460,91050561862,868774394325,8257228721817,78288453457352,
%U 741199448968875
%N Number of prime pairs below 10^n having a difference of 42.
%H Siegfried "Zig" Herzog, <a href="http://zigherzog.net/primes/index.html#compare">Frequency of Occurrence of Prime Gaps</a>
%H T. Oliveira e Silva, S. Herzog, and S. Pardi, <a href="http://dx.doi.org/10.1090/S0025-5718-2013-02787-1">Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18</a>, Math. Comp., 83 (2014), 2033-2060.
%e a(6) = 476 because there are 476 prime gaps of 42 below 10^6.
%Y Cf. A007508, A093974, A093976.
%K nonn,more
%O 1,5
%A _Enoch Haga_, Apr 24 2004
%E a(10)-a(13) from _Washington Bomfim_, Jun 22 2012
%E a(14)-a(18) from S. Herzog's website added by _Giovanni Resta_, Aug 14 2018