The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093960 a(1) = 1, a(2) = 2, a(n + 1) = n*a(1) + (n-1)*a(2) + ...(n-r)*a(r + 1) + ... + a(n). 3
 1, 2, 4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349, 7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879, 17393796001, 45537549124, 119218851371, 312119004989, 817138163596 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(1) = a(2) = 1 gives A088305 i.e. Fibonacci numbers with even indices. This can be called 'fake Fibonacci sequence'. 4 = 3+1, 11 = 8+3, 29 = 21+8, 76 = 55+21, etc. a(n) = F(2n-2) + F(2n-4). Except for the initial terms, this is the same as the bisection of the Lucas sequence (A002878). - Franklin T. Adams-Watters, Jul 17 2006 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-1). FORMULA a(n) = F(2n-2) + F(2n-4), where F(k) is k-th Fibonacci number, n > 2. a(n) = 3*a(n-1)-a(n-2) for n>4. - Colin Barker, Mar 26 2015 G.f.: x*(x-1)^2*(x+1) / (x^2-3*x+1). - Colin Barker, Mar 26 2015 MAPLE a[1]:=1: a[2]:=2: for n from 2 to 33 do a[n+1]:=sum((n-r)*a[r+1], r=0..n-1) od: seq(a[n], n=1..33); # Emeric Deutsch, Aug 01 2005 MATHEMATICA Print[1]; Print[2]; Do[Print[Fibonacci[2*n - 2] + Fibonacci[2*n - 4]], {n, 3, 20}] (* Ryan Propper, Jun 19 2005 *) LinearRecurrence[{3, -1}, {1, 2, 4, 11}, 30] (* Harvey P. Dale, Nov 17 2018 *) PROG (PARI) Vec(x*(x-1)^2*(x+1)/(x^2-3*x+1) + O(x^100)) \\ Colin Barker, Mar 26 2015 CROSSREFS Cf. A088305. Sequence in context: A148139 A336871 A061860 * A267912 A118311 A132836 Adjacent sequences:  A093957 A093958 A093959 * A093961 A093962 A093963 KEYWORD nonn,easy AUTHOR Amarnath Murthy, May 22 2004 EXTENSIONS More terms from Ryan Propper, Jun 19 2005 More terms from Emeric Deutsch, Aug 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 12:42 EDT 2020. Contains 337344 sequences. (Running on oeis4.)