login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime that differs from a multiple of n by unity.
5

%I #17 Feb 04 2023 04:05:14

%S 2,3,2,3,11,5,13,7,17,11,23,11,53,13,29,17,67,17,37,19,41,23,47,23,

%T 101,53,53,29,59,29,61,31,67,67,71,37,73,37,79,41,83,41,173,43,89,47,

%U 281,47,97,101,101,53,107,53,109,113,113,59,353,59,367,61,127,127,131,67,269

%N Smallest prime that differs from a multiple of n by unity.

%C Numbers n such that a(n-1)=a(n+1)=n are A025584 (primes p such that p-2 is not a prime). - _Rick L. Shepherd_, Aug 23 2004

%H Robert Israel, <a href="/A093868/b093868.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = min(A034694(n), A038700(n)) for all n >= 1. - _Rick L. Shepherd_, Aug 23 2004

%p f:= proc(n) local j,k;

%p for k from 1 do

%p for j in [-1,1] do

%p if isprime(k*n+j) then return k*n+j fi

%p od od

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Nov 07 2019

%t a[n_] := Module[{p}, For[p = 2, True, p = NextPrime[p], If[Divisible[p-1, n] || Divisible[p+1, n], Return[p]]]];

%t Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Feb 04 2023 *)

%o (PARI) a(n) = forprime(p=2, , if (!((p+1) % n) || !((p-1) % n), return (p))); \\ _Michel Marcus_, Aug 08 2014

%Y Cf. A093869.

%Y Cf. A034694 (Smallest prime == 1 (mod n)), A038700 (Smallest prime == -1 (mod n)).

%K nonn,look

%O 1,1

%A _Amarnath Murthy_, Apr 20 2004

%E More terms from _Rick L. Shepherd_, Aug 23 2004