The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093858 a(0) = 1, a(1)= 2, a(n) = (a(n+1) - a(n-1))/n, or a(n+1) = n*a(n) + a(n-1). 3
 1, 2, 3, 8, 27, 116, 607, 3758, 26913, 219062, 1998471, 20203772, 224239963, 2711083328, 35468323227, 499267608506, 7524482450817, 120890986821578, 2062671258417643, 37248973638339152, 709793170386861531 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = -2*(BesselI[n, -2]*(2 BesselK[0, 2] - BesselK[1, 2]) + (-2 BesselI[0, 2] + BesselI[1, -2])*BesselK[n, 2]). - Ryan Propper, Sep 14 2005 E.g.f.: -3*Pi*(BesselI(1, 2)*BesselY(0, 2*I*sqrt(1-x)) + I*BesselY(1, 2*I)*BesselI(0, 2*sqrt(1-x))). Such e.g.f. computations were the result of an e-mail exchange with Gary Detlefs. After differentiation and setting x=0 one has to use simplifications. See the Abramowitz-Stegun handbook, p. 360, 9.1.16 and p. 375, 9.63. - Wolfdieter Lang, May 19 2010 Lim_{n->infinity} a(n)/(n-1)! = 2*BesselI(0,2) - BesselI(1,-2) = 6.1498074593094635982566633... - Vaclav Kotesovec, Jan 05 2013 MATHEMATICA a = 1; b = 2; Print[a]; Print[b]; Do[c = n*b + a; Print[c]; a = b; b = c, {n, 1, 30}] (* Ryan Propper, Sep 14 2005 *) CROSSREFS Similar recurrences: A001040, A001053, A058279, A058307. - Wolfdieter Lang, May 19 2010 Sequence in context: A086613 A121401 A318895 * A080568 A091339 A006277 Adjacent sequences:  A093855 A093856 A093857 * A093859 A093860 A093861 KEYWORD easy,nonn AUTHOR Amarnath Murthy, Apr 19 2004 EXTENSIONS a(10)-a(20) from Ryan Propper, Sep 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 12:05 EST 2020. Contains 338923 sequences. (Running on oeis4.)