login
A093791
Hook products of all partitions of 12.
1
62208, 82944, 82944, 85050, 85050, 107520, 107520, 115200, 115200, 129600, 129600, 134400, 134400, 136080, 136080, 155520, 155520, 161280, 161280, 179200, 179200, 181440, 201600, 201600, 226800, 226800, 228096, 230400, 230400, 248832
OFFSET
1,1
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..77
FORMULA
a(n) = 12!/A003876(78-n).
MAPLE
H:=proc(pa) local F, j, p, Q, i, col, a, A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j], j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j], j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j, j=1..nops(Q[i]))] od: a:=proc(i, j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa), pa[1], a): product(product(A[m, n], n=1..pa[1]), m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i], i=1..nops(a))] end: sort([seq(H(rev(partition(12)[q])), q=1..numbpart(12))]);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[12!/T[12]] (* Jean-François Alcover, Sep 22 2024, after Alois P. Heinz in A060240 *)
CROSSREFS
Row n=12 of A093784.
Sequence in context: A214147 A203258 A089009 * A083488 A360838 A181114
KEYWORD
fini,full,nonn
AUTHOR
Emeric Deutsch, May 17 2004
STATUS
approved