login
A093790
Hook products of all partitions of 11.
0
17280, 17280, 25920, 25920, 30240, 30240, 32400, 32400, 33600, 34560, 34560, 36288, 36288, 40320, 40320, 40320, 40320, 43200, 43200, 48384, 48384, 57600, 57600, 60480, 60480, 67200, 67200, 72576, 72576, 86400, 86400, 103680, 103680, 120960, 120960, 158400, 172800, 172800, 190080, 190080, 241920, 241920, 302400, 302400, 332640, 332640, 362880, 362880, 887040, 887040, 907200, 907200, 3991680, 3991680, 39916800, 39916800
OFFSET
1,1
COMMENTS
All 56 terms of this finite sequence are shown.
FORMULA
a(n) = 11!/A003875(57-n).
MAPLE
H:=proc(pa) local F, j, p, Q, i, col, a, A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j], j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j], j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j, j=1..nops(Q[i]))] od: a:=proc(i, j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa), pa[1], a): product(product(A[m, n], n=1..pa[1]), m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i], i=1..nops(a))] end: sort([seq(H(rev(partition(11)[q])), q=1..numbpart(11))]);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@Table[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[11!/T[11]] (* Jean-François Alcover, Sep 05 2024, after Alois P. Heinz in A060240 *)
CROSSREFS
Row n=11 of A093784.
Sequence in context: A236447 A094413 A209967 * A229683 A228379 A230164
KEYWORD
fini,full,nonn
AUTHOR
Emeric Deutsch, May 17 2004
STATUS
approved