login
A093776
Smallest integer at which the value of truncated Mertens function equals 2^n.
0
6, 14, 26, 58, 142, 326, 734, 1713, 3713, 8057, 17869, 38985, 84046, 180010, 385846, 823687, 1737474, 3680099, 7755978, 16282918, 34142786, 71419857, 148960009, 310320958, 645191390, 1339363921, 2777235410, 5750237373, 11891042257, 24563702542, 50684981730
OFFSET
1,1
COMMENTS
It appears that the ratio of a(j+1)/a(j) is a bit larger than 2 and perhaps tends to 2. Why?
FORMULA
Solutions to Min(x : A088004(x) = 2^n}, i.e. a(n) = Min(x: A002321(x) + A000720(x) = 2^n)
MATHEMATICA
s = 0; k = 1; Do[ While[s = s + MoebiusMu[k]; s + PrimePi[k] < 2^n, k++ ]; Print[k]; k++, {n, 20}]
KEYWORD
nonn
AUTHOR
Labos Elemer, May 03 2004
EXTENSIONS
a(21) - a(24) from Robert G. Wilson v, May 06 2004
a(25)-a(31) from Donovan Johnson, Jun 21 2012
STATUS
approved