login
Smallest integers at which the value of truncated Mertens function equals the n-th primorial, the product of first n prime numbers.
1

%I #6 Oct 15 2013 22:32:23

%S 6,21,129,1290,20209,353018,7537961,173772587,4735433401,160157951005

%N Smallest integers at which the value of truncated Mertens function equals the n-th primorial, the product of first n prime numbers.

%F Solutions to Min(x : A088004(x) = n!), i.e. a(n) = Min(x: A002321(x) + A000720(x) = A002110(n))

%t pri[x_] :=pri[x-1]*Prime[x];pri[0]=1; s = 0; k = 1; Do[ While[s = s + MoebiusMu[k]; s + PrimePi[k] < pri[n], k++ ]; Print[k]; k++, {n, 10}]

%Y Cf. A002321, A000720, A088004, A093772, A093773, A002110, A093774.

%K hard,more,nonn

%O 1,1

%A _Labos Elemer_, May 03 2004

%E a(8)-a(10) from _Donovan Johnson_, Jun 21 2012