%I #9 Mar 19 2017 01:01:58
%S 1,6,10,14,15,21,22,26,34,35,38,39,51,55,57,58,62,65,77,85,86,87,91,
%T 93,94,95,119,122,123,129,134,142,143,145,146,158,159,161,185,202,203,
%U 205,206,209,210,213,214,215,217,218,219,221,253,254,265,278,299,301,302
%N a(n) is the smallest integer at which the value of the "truncated Mertens function" (= A088004) equals n.
%C Truncated Mertens function = summatory Moebius when argument runs through nonprimes.
%t mer[x_] :=mer[x]=mer[x-1]+MoebiusMu[x]; mer[0]=0;$RecursionLimit=1000; t=Table[mer[w]+PrimePi[w], {w, 1, 1000}] Table[Min[Flatten[Position[t, j]]], {j, 1, 200}]
%Y Cf. A002321, A008682, A059071, A088004, A093773.
%K nonn
%O 1,2
%A _Labos Elemer_, Apr 28 2004