OFFSET
1,4
LINKS
Siegfried "Zig" Herzog, Frequency of Occurrence of Prime Gaps
T. Oliveira e Silva, S. Herzog, and S. Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18, Math. Comp., 83 (2014), 2033-2060.
EXAMPLE
a(4) = 15 because there are 15 prime gaps of 20 below 10^4.
MATHEMATICA
Table[Length[Select[Partition[Prime[Range[PrimePi[10^i]]], 2, 1], #[[2]] - #[[1]] == 20 &]], {i, 9}] (* Harvey P. Dale, Jan 29 2011 *)
PROG
(UBASIC) 20 N=1:dim T(34); 30 A=nxtprm(N); 40 N=A; 50 B=nxtprm(N); 60 D=B-A; 70 for x=2 to 34 step 2; 80 if D=X and B<10^2+1 then T(X)=T(X)+1; 90 next X; 100 if B>10^2+1 then 140; 110 B=A; 120 N=N+1; 130 goto 30; 140 for x=2 to 34 step 2; 150 print T(X); , 160 next (This program simultaneously finds values from 2 to 34 - if gap=2 add 1- adjust lines 80 and 100 for desired 10^n)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Enoch Haga, Apr 15 2004
EXTENSIONS
a(10)-a(13) from Washington Bomfim, Jun 22 2012
a(14)-a(18) from S. Herzog's website added by Giovanni Resta, Aug 14 2018
STATUS
approved