%I #19 May 11 2023 11:56:57
%S 0,0,7,54,484,4233,35394,293201,2464565,20943953,179718000,1556469349,
%T 13597962107,119731244640,1061769557793,9476573902533,85076550195696,
%U 767846949916102
%N Number of prime pairs below 10^n having a difference of 14.
%H Siegfried "Zig" Herzog, <a href="http://zigherzog.net/primes/index.html#compare">Frequency of Occurrence of Prime Gaps</a>
%H T. Oliveira e Silva, S. Herzog, and S. Pardi, <a href="http://dx.doi.org/10.1090/S0025-5718-2013-02787-1">Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18</a>, Math. Comp., 83 (2014), 2033-2060.
%e a(3) = 7 because there are 7 prime gaps of 14 below 10^3.
%o (UBASIC) 20 N=1:dim T(34); 30 A=nxtprm(N); 40 N=A; 50 B=nxtprm(N); 60 D=B-A; 70 for x=2 to 34 step 2; 80 if D=X and B<10^2+1 then T(X)=T(X)+1; 90 next X; 100 if B>10^2+1 then 140; 110 B=A; 120 N=N+1; 130 goto 30; 140 for x=2 to 34 step 2; 150 print T(X);, 160 next (This program simultaneously finds values from 2 to 34 -- if gap=2 add 1-- adjust lines 80 and 100 for desired 10^n)
%Y Cf. A007508, A093741, A093743.
%K nonn,more
%O 1,3
%A _Enoch Haga_, Apr 15 2004
%E a(10)-a(13) from _Washington Bomfim_, Jun 22 2012
%E a(14)-a(18) from S. Herzog's website added by _Giovanni Resta_, Aug 14 2018