OFFSET
1,3
LINKS
Siegfried "Zig" Herzog, Frequency of Occurrence of Prime Gaps
T. Oliveira e Silva, S. Herzog, and S. Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18, Math. Comp., 83 (2014), 2033-2060.
EXAMPLE
a(3) = 16 because there are 16 prime gaps of 10 below 10^3.
PROG
(UBASIC)
20 N=1:dim T(34);
30 A=nxtprm(N);
40 N=A;
50 B=nxtprm(N);
60 D=B-A;
70 for x=2 to 34 step 2;
80 if D=X and B<10^2+1 then T(X)=T(X)+1;
90 next X;
100 if B>10^2+1 then 140;
110 B=A;
120 N=N+1;
130 goto 30;
140 for x=2 to 34 step 2;
150 print T(X); ,
160 next
## (This program simultaneously finds values from 2 to 34 - if gap=2 add 1- adjust lines 80 and 100 for desired 10^n)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Enoch Haga, Apr 15 2004
EXTENSIONS
a(10)-a(13) from Washington Bomfim, Jun 20 2012
a(14)-a(18) from S. Herzog's website added by Giovanni Resta, Aug 14 2018
STATUS
approved