

A093738


Number of prime pairs below 10^n having a difference of 6.


2



0, 7, 44, 299, 1940, 13549, 99987, 768752, 6089791, 49392723, 408550278, 3435528229, 29289695650, 252672394234, 2201981901415, 19360330918473, 171550299264139, 1530609037414453
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..18.
Siegfried "Zig" Herzog, Frequency of Occurrence of Prime Gaps
T. Oliveira e Silva, S. Herzog, and S. Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18, Math. Comp., 83 (2014), 20332060.


EXAMPLE

a(2) = 7 because there are 7 prime gaps of 6 below 10^2.


PROG

UBASIC: 20 N=1:dim T(34); 30 A=nxtprm(N); 40 N=A; 50 B=nxtprm(N); 60 D=BA; 70 for x=2 to 34 step 2; 80 if D=X and B<10^2+1 then T(X)=T(X)+1; 90 next X; 100 if B>10^2+1 then 140; 110 B=A; 120 N=N+1; 130 goto 30; 140 for x=2 to 34 step 2; 150 print T(X); , 160 next (This program simultaneously finds values from 2 to 34  if gap=2 add 1 adjust lines 80 and 100 for desired 10^n)


CROSSREFS

Cf. A007508, A093737, A093739.
Sequence in context: A027279 A099464 A254660 * A091127 A166775 A221541
Adjacent sequences: A093735 A093736 A093737 * A093739 A093740 A093741


KEYWORD

nonn,more


AUTHOR

Enoch Haga, Apr 15 2004


EXTENSIONS

a(10)a(13) from Washington Bomfim, Jun 22 2012
a(14)a(18) from S. Herzog's website added by Giovanni Resta, Aug 14 2018


STATUS

approved



