login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093654 Lower triangular matrix, read by rows, defined as the convergent of the concatenation of matrices using the iteration: M(n+1) = [[M(n),0*M(n)],[M(n)^2,M(n)^2]], with M(0) = [1]. 6
1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 7, 2, 4, 1, 7, 2, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 7, 2, 4, 1, 0, 0, 0, 0, 7, 2, 4, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 7, 2, 0, 0, 4, 1, 0, 0, 7, 2, 0, 0, 4, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Related to the number of tournament sequences (A008934). First column forms A093655, where A093655(2^n) = A008934(n) for n>=0. Row sums form A093656, where A093656(2^(n-1)) = A093657(n) for n>=1.

LINKS

Table of n, a(n) for n=1..105.

FORMULA

First column: T(2^n, 1) = A008934(n) for n>=0.

EXAMPLE

Let M(n) be the lower triangular matrix formed from the first 2^n rows.

To generate M(3) from M(2), take the matrix square of M(2):

[1,0,0,0]^2=[1,0,0,0]

[1,1,0,0]...[2,1,0,0]

[1,0,1,0]...[2,0,1,0]

[2,1,2,1]...[7,2,4,1]

and append M(2)^2 to the bottom left and bottom right of M(2):

[1],

[1,1],

[1,0,1],

[2,1,2,1],

.........

[1,0,0,0],[1],

[2,1,0,0],[2,1],

[2,0,1,0],[2,0,1],

[7,2,4,1],[7,2,4,1].

Repeating this process converges to triangle A093654.

CROSSREFS

Cf. A008934, A093655, A093656, A093657, A093658.

Sequence in context: A158566 A128410 A059782 * A220115 A039924 A275346

Adjacent sequences:  A093651 A093652 A093653 * A093655 A093656 A093657

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Apr 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 16:30 EDT 2019. Contains 321292 sequences. (Running on oeis4.)