login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093620 Values of Laguerre polynomials: a(n) = 2^n*n!*LaguerreL(n,-1/2,-2). 4
1, 5, 43, 499, 7193, 123109, 2430355, 54229907, 1347262321, 36833528197, 1097912385851, 35409316648435, 1227820993510153, 45528569866101989, 1797044836586213923, 75200136212985945619, 3324579846014080352225, 154797474251689486249477, 7570037033145534341015371 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Not the same as the numerator of LaguerreL(n,-1/2,-2). - Robert G. Wilson v, Apr 08 2004

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

FORMULA

E.g.f.: exp(4*x/(1-2*x))/(1-2*x)^(1/2).

a(n) ~ n^n*2^(n-1/2)*exp(-n+2*sqrt(2*n)-1) * (1 + 5/(6*sqrt(2*n))). - Vaclav Kotesovec, Jun 22 2013

MAPLE

a:= proc(n) option remember; `if`(n<2, 4*n+1,

      (4*n+1)*a(n-1) -2*(n-1)*(2*n-3)*a(n-2))

    end:

seq(a(n), n=0..20);  # Alois P. Heinz, Jun 22 2013

MATHEMATICA

Table[2^n n!LaguerreL[n, -1/2, -2], {n, 0, 16}] (* Robert G. Wilson v, Apr 08 2004 *)

PROG

(PARI) x='x+O('x^30); Vec(serlaplace(exp(4*x/(1-2*x))/(1-2*x)^(1/2))) \\ G. C. Greubel, May 11 2018

(PARI) a(n) = 2^n*n!*pollaguerre(n, -1/2, -2); \\ Michel Marcus, Feb 05 2021

(MAGMA) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(4*x/(1-2*x))/(1-2*x)^(1/2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 11 2018

CROSSREFS

Bisection of A005425.

Sequence in context: A083070 A191802 A092471 * A231277 A188365 A107720

Adjacent sequences:  A093617 A093618 A093619 * A093621 A093622 A093623

KEYWORD

nonn

AUTHOR

Karol A. Penson, Apr 06 2004

EXTENSIONS

More terms from Robert G. Wilson v, Apr 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 03:37 EDT 2021. Contains 343030 sequences. (Running on oeis4.)