login
E.g.f. equals the ratio of two power series, each with triangular exponents of x.
1

%I #8 Jan 01 2018 17:52:16

%S 0,1,-1,3,-15,85,-570,4509,-40804,414864,-4686570,58245650,-789691134,

%T 11598605460,-183459343613,3109122970590,-56203651969935,

%U 1079493501290439,-21953265755518782,471258656426134701,-10648683969964745520,252651472831081785300

%N E.g.f. equals the ratio of two power series, each with triangular exponents of x.

%C E.g.f. is asymptotic to 1-1/(2x). Compare to e.g.f. of A093523.

%H Robert Israel, <a href="/A093615/b093615.txt">Table of n, a(n) for n = 0..440</a>

%F E.g.f: T1(x)/T0(x), where T0(x) = sum_{n>=0} x^(n*(n+1)/2)/(n*(n+1)/2)! and T1(x) = sum_{n>=0} x^(n*(n+1)/2+1)/(n*(n+1)/2+1)!; T0(r)=0 at r=-0.8851021553904208809237177147294641529670...

%p N:= 10: # to get a(0)..a((N+1)*(N+2)/2-1)

%p T0:= add(x^(n*(n+1)/2)/(n*(n+1)/2)!, n=0..N):

%p T1:= add(x^(1+n*(n+1)/2)/(1+n*(n+1)/2)!,n=0..N):

%p S:= series(T1/T0,x,(N+1)*(N+2)/2):

%p seq(coeff(S,x,n)*n!,n=0..(N+1)*(N+2)/2-1); # _Robert Israel_, Jan 01 2018

%o (PARI) T0(x)=sum(k=0,sqrtint(2*n)+1,x^(k*(k+1)/2)/(k*(k+1)/2)!)

%o (PARI) T1(x)=sum(k=0,sqrtint(2*n)+1,x^(k*(k+1)/2+1)/(k*(k+1)/2+1)!)

%o (PARI) a(n)=n!*polcoeff(T1(x)/T0(x)+x*O(x^n),n)

%Y Cf. A093523.

%K sign

%O 0,4

%A _Paul D. Hanna_, Apr 05 2004