login
Let b(0)=1; b(1)=1; b(n+2) = (Pi^2/6 + 6/Pi^2)*b(n+1) - b(n). a(n) = floor(b(n)).
4

%I #12 Apr 11 2021 06:40:10

%S 1,1,2,4,7,12,20,33,54,90,148,244,401,660,1086,1786,2939,4835,7953,

%T 13082,21520,35399,58230,95785,157560,259175,426327,701280,1153559,

%U 1897529,3121310,5134350,8445667,13892566,22852355,37590617,61834088

%N Let b(0)=1; b(1)=1; b(n+2) = (Pi^2/6 + 6/Pi^2)*b(n+1) - b(n). a(n) = floor(b(n)).

%C a(n+1)/a(n) converges to Pi^2/6 (A013661).

%Y Cf. A013661, A090039, A090426, A090427, A093608.

%K nonn

%O 0,3

%A _Gary W. Adamson_, Apr 04 2004

%E Edited by _Don Reble_, Nov 14 2005