The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093605 Numerators of sqrt(2) term in expected number of complex eigenvalues in an n X n real matrix with entries chosen from a standard normal distribution. 1
 0, 1, 1, 11, 13, 211, 271, 1919, 2597, 67843, 95259, 588933, 850251, 10098967, 14904091, 85806311, 128927573, 5792144099, 8834766227, 48605936617, 75096287791, 812156618077, 1268822838961, 6760265315081, 10665172132163 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Related to factored form of Beta[ -1,n,3/2]. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Random Matrix FORMULA a(n+1) = Sum_{k=0..floor(n/2)} ((C(2*(n-2*k),n-2*k)*16^k)/Sum_{k=0..n, mod(C(n,k),2)). - Paul Barry, Oct 26 2007 EXAMPLE 0, 2-sqrt(2), 2-sqrt(2)/2, 4-(11*sqrt(2))/8, 4-(13*sqrt(2))/16, 6-(211*sqrt(2))/128, ... MATHEMATICA Table[Sum[(2^(4*k)*Binomial[2*(n-2*k-1), n-2*k-1])/Sum[Mod[Binomial[n - 1, j], 2], {j, 0, n - 1}], {k, 0, Floor[(n - 1)/2]}], {n, 0, 50}] (* G. C. Greubel, Oct 01 2018 *) PROG (PARI) for(n=0, 30, print1(sum(k=0, floor((n-1)/2), 2^(4*k)*binomial(2*(n-2*k-1), n-2*k-1)/sum(j=0, n-1, lift(Mod(binomial(n-1, j), 2)))), ", ")) \\ G. C. Greubel, Oct 01 2018 CROSSREFS Cf. A046161, A052928. Sequence in context: A140969 A064759 A238090 * A288304 A155967 A111070 Adjacent sequences: A093602 A093603 A093604 * A093606 A093607 A093608 KEYWORD nonn,frac AUTHOR Eric W. Weisstein, Apr 03 2004 EXTENSIONS More terms from Max Alekseyev, Apr 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 08:35 EST 2022. Contains 358515 sequences. (Running on oeis4.)