%I #5 Aug 14 2015 23:30:00
%S 1,1,4,59,521,872492,415603,67323341,33484369708417,249063001217323,
%T 402233765088019,2340564635396243082668,1836709980831869650909,
%U 7917057291763619291770993,6790679763108188972468718224386027
%N Numerator of Sum_{k in A026424} 1/k^(2n).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeSums.html">Prime Sums</a>
%F 1/Pi^(2n) * numerator of (zeta(2n)^2-zeta(4n))/(2zeta(2n)).
%e Pi^2/20, Pi^4/1260, (4*Pi^6)/225225, (59*Pi^8)/137837700, ...
%Y Cf. A026424, A093598.
%K nonn,frac
%O 1,3
%A _Eric W. Weisstein_, Apr 03 2004