login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093573 Triangle read by rows: row n gives positions where n occurs in the Golay-Rudin-Shapiro related sequence A020986. 1

%I

%S 0,1,3,2,4,6,5,7,13,15,8,12,14,16,26,9,11,17,19,25,27,10,18,20,22,24,

%T 28,30,21,23,29,31,53,55,61,63,32,50,52,54,56,60,62,64,106,33,35,49,

%U 51,57,59,65,67,105,107,34,36,38,48,58,66,68,70,104,108,110,37,39,45,47,69,71,77,79,101,103,109,111

%N Triangle read by rows: row n gives positions where n occurs in the Golay-Rudin-Shapiro related sequence A020986.

%C Each positive integer n occurs n times, so the n-th row has length n.

%H Reinhard Zumkeller, <a href="/A093573/b093573.txt">Rows n = 1..150 of triangle, flattened</a>

%H John Brillhart, Patrick Morton, <a href="http://projecteuclid.org/euclid.ijm/1256048841">Über Summen von Rudin-Shapiroschen Koeffizienten</a>, (German) Illinois J. Math. 22 (1978), no. 1, 126--148. MR0476686 (57 #16245). - _N. J. A. Sloane_, Jun 06 2012

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rudin-ShapiroSequence.html">Rudin-Shapiro Sequence</a>

%e A020986(n) for n = 0, 1, ... is 1, 2, 3, 2, 3, 4, 3, 4, 5, 6, ..., so the positions of 1, 2, 3, 4, ... are 0; 1, 3; 2, 4, 6; 5, 7, 13, 15; ...

%e From _Seiichi Manyama_, Apr 23 2017: (Start)

%e Triangle begins:

%e 0,

%e 1, 3,

%e 2, 4, 6,

%e 5, 7, 13, 15,

%e 8, 12, 14, 16, 26,

%e 9, 11, 17, 19, 25, 27,

%e 10, 18, 20, 22, 24, 28, 30,

%e 21, 23, 29, 31, 53, 55, 61, 63,

%e 32, 50, 52, 54, 56, 60, 62, 64, 106,

%e 33, 35, 49, 51, 57, 59, 65, 67, 105, 107,

%e 34, 36, 38, 48, 58, 66, 68, 70, 104, 108, 110,

%e ... (End)

%t With[{n = 16}, TakeWhile[#, Length@ #2 == #1 & @@ # &][[All, -1]] &@ Transpose@ {Keys@ #, Lookup[#, Keys@ #]} &[PositionIndex@ Accumulate@ Array[1 - 2 Mod[Length[FixedPointList[BitAnd[#, # - 1] &, BitAnd[#, Quotient[#, 2]]]], 2] &, n^2, 0] - 1]] // Flatten (* _Michael De Vlieger_, Jan 25 2020 *)

%o (Haskell)

%o a093573 n k = a093573_row n !! (k-1)

%o a093573_row n = take n $ elemIndices n a020986_list

%o a093573_tabl = map a093573_row [1..]

%o -- _Reinhard Zumkeller_, Jun 06 2012

%Y Column k=1 gives A212591. Diagonal k=n gives A020991.

%Y Cf. A020985, A020986.

%K nonn,tabl

%O 1,3

%A _Eric W. Weisstein_, Apr 01 2004

%E Offset corrected by _Reinhard Zumkeller_, Jun 06 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 20:44 EST 2020. Contains 338755 sequences. (Running on oeis4.)