

A093573


Triangle read by rows: row n gives positions where n occurs in the GolayRudinShapiro related sequence A020986.


1



0, 1, 3, 2, 4, 6, 5, 7, 13, 15, 8, 12, 14, 16, 26, 9, 11, 17, 19, 25, 27, 10, 18, 20, 22, 24, 28, 30, 21, 23, 29, 31, 53, 55, 61, 63, 32, 50, 52, 54, 56, 60, 62, 64, 106, 33, 35, 49, 51, 57, 59, 65, 67, 105, 107, 34, 36, 38, 48, 58, 66, 68, 70, 104, 108, 110, 37, 39, 45
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Each positive integer n occurs n times, so the nth row has length n.


LINKS

Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
John Brillhart, Patrick Morton, Über Summen von RudinShapiroschen Koeffizienten, (German) Illinois J. Math. 22 (1978), no. 1, 126148. MR0476686 (57 #16245).  N. J. A. Sloane, Jun 06 2012
Eric Weisstein's World of Mathematics, RudinShapiro Sequence


EXAMPLE

A020986(n) for n = 0, 1, ... is 1, 2, 3, 2, 3, 4, 3, 4, 5, 6, ..., so the positions of 1, 2, 3, 4, ... are 0; 1, 3; 2, 4, 6; 5, 7, 13, 15; ...
From Seiichi Manyama, Apr 23 2017: (Start)
Triangle begins:
0,
1, 3,
2, 4, 6,
5, 7, 13, 15,
8, 12, 14, 16, 26,
9, 11, 17, 19, 25, 27,
10, 18, 20, 22, 24, 28, 30,
21, 23, 29, 31, 53, 55, 61, 63,
32, 50, 52, 54, 56, 60, 62, 64, 106,
33, 35, 49, 51, 57, 59, 65, 67, 105, 107,
34, 36, 38, 48, 58, 66, 68, 70, 104, 108, 110,
... (End)


PROG

(Haskell)
a093573 n k = a093573_row n !! (k1)
a093573_row n = take n $ elemIndices n a020986_list
a093573_tabl = map a093573_row [1..]
 Reinhard Zumkeller, Jun 06 2012


CROSSREFS

Column k=1 gives A212591.
Cf. A020985, A020986, A020991.
Sequence in context: A254107 A116942 A254108 * A126290 A277377 A227741
Adjacent sequences: A093570 A093571 A093572 * A093574 A093575 A093576


KEYWORD

nonn,tabl


AUTHOR

Eric W. Weisstein, Apr 01 2004


EXTENSIONS

Offset corrected by Reinhard Zumkeller, Jun 06 2012


STATUS

approved



