login
A093567
Binomial (Binomial (n,2), 3) - Binomial (Binomial (n,3), 2).
1
0, 1, 14, 75, 265, 735, 1736, 3654, 7050, 12705, 21670, 35321, 55419, 84175, 124320, 179180, 252756, 349809, 475950, 637735, 842765, 1099791, 1418824, 1811250, 2289950, 2869425, 3565926, 4397589, 5384575, 6549215, 7916160, 9512536
OFFSET
2,3
COMMENTS
All terms are positive: A093566 >= A054563 ==> C( C(n,2), 3) >= C( C(n,3), 2) ==> n^2*(n^4 + 3n^3 -35n^2 + 69n -38)/144 >= 0 ==> (n - 2)(n - 1)(n^2 + 6n - 19) ==> 0 which it is for all n >= 2.
LINKS
Solomon W. Golomb, Iterated binomial coefficients, Amer. Math. Monthly, 87 (1980), 719-727.
FORMULA
a(n) = A093566(n) - A054563(n).
G.f.: x^3*(-1-7*x+2*x^2+x^3)/(x-1)^7. - R. J. Mathar, Dec 08 2010
MAPLE
A093567:=n->binomial(binomial(n, 2), 3) - binomial(binomial(n, 3), 2); seq(A093567(n), n=2..30); # Wesley Ivan Hurt, Feb 02 2014
MATHEMATICA
Table[ Binomial[ Binomial[n, 2], 3] - Binomial[ Binomial[n, 3], 2], {n, 2, 34}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 14, 75, 265, 735, 1736}, 40] (* Harvey P. Dale, Jun 12 2016 *)
PROG
(PARI) a(n) = binomial(binomial(n, 2), 3) - binomial(binomial(n, 3), 2); \\ Michel Marcus, Oct 01 2017
CROSSREFS
Sequence in context: A167633 A196411 A108650 * A296996 A270704 A200554
KEYWORD
nonn
AUTHOR
STATUS
approved