login
A093550
a(n) is the smallest number m such that each of the numbers m-1, m and m+1 is a product of n distinct primes.
12
34, 1310, 203434, 16467034, 1990586014, 41704979954, 102099792179230, 22192526378762466
OFFSET
2,1
COMMENTS
Each term of this sequence is of the form 4k+2.
EXAMPLE
a(5)=16467034 because each of the three numbers 16467034-1, 16467034 & 16467034+1 are products of 5 distinct primes (16467033=3*11*17*149*197, 16467034=2*19*23*83*227, 16467035=5*13*37*41*167) and 16467034 is the smallest such number.
MATHEMATICA
a[n_] := a[n] = (For[m=1, !(Length[FactorInteger[4m+1]]==n && SquareFreeQ[4m+1] && Length[FactorInteger[4m+2]]==n && SquareFreeQ[4m+2] && Length[FactorInteger[4m+3]]==n && SquareFreeQ[4m+3]), m++ ]; 4m+2); Table[Print[a[n]]; a[n], {n, 2, 6}] (* updated by Jean-François Alcover, Jul 04 2013 *)
PROG
(PARI) a(n)={my(m=1); while(!(issquarefree(m-1)&&issquarefree(m)&&issquarefree(m+1)&&omega(m-1)==n&&omega(m)==n&&omega(m+1)==n), m++); return(m); } main(size)={my(n); return(vector(size, n, a(n+1))); } /* Anders Hellström, Jul 14 2015 */
KEYWORD
more,nonn
AUTHOR
Farideh Firoozbakht, Apr 07 2004, corrected Aug 26 2006
EXTENSIONS
a(7) added from Jacques Tramu's web site by Farideh Firoozbakht, Aug 26 2006
a(8) from Donovan Johnson, Oct 27 2008
a(9) from James G. Merickel, Jul 24 2015
STATUS
approved