login
A093545
Sorted mapping of A093544 onto the integers.
4
0, 2, 1, 5, 7, 3, 10, 12, 4, 15, 17, 6, 20, 22, 8, 25, 27, 9, 30, 32, 11, 35, 37, 13, 40, 42, 14, 45, 47, 16, 50, 52, 18, 55, 57, 19, 60, 62, 21, 65, 67, 23, 70, 72, 24, 75, 77, 26, 80, 82, 28, 85, 87, 29, 90, 92, 31, 95, 97, 33, 100, 102, 34, 105, 107, 36, 110, 112, 38
OFFSET
0,2
COMMENTS
As A093544 contains the odd numbers not of form 12k+9, we map from modulo 12 to modulo 5: 1->0, 3->1, 5->2, 7->3, 11->4.
FORMULA
a(3n) = 5n, a(3n+1) = 5n+2, a(3n+2) = A047206(n).
G.f.: x*(x^10 + 3*x^9 + 5*x^8 + x^7 + 5*x^6 + 5*x^5 + 2*x^4 + 5*x^3 + 5*x^2 + x + 2)/(1 - x^3 - x^9 + x^12).
MATHEMATICA
CoefficientList[Series[x (x^10 + 3 x^9 + 5 x^8 + x^7 + 5 x^6 + 5 x^5 + 2 x^4 + 5 x^3 + 5 x^2 + x + 2)/(1 - x^3 - x^9 + x^12), {x, 0, 68}], x] (* Michael De Vlieger, Mar 05 2021 *)
PROG
(PARI) a(n)=5*(A093544(n)\12)+if(A093544(n)%12==11, 4, ((A093544(n)%12)-1)/2)
CROSSREFS
Cf. A047206, A340615 (inverse permutation), A014682.
Sequence in context: A109261 A085240 A002251 * A293845 A249265 A259972
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 31 2004
STATUS
approved