

A093513


Transform of the prime sequence by the Rule89 cellular automaton.


10



1, 3, 4, 9, 10, 15, 16, 21, 22, 25, 26, 27, 28, 33, 34, 35, 36, 39, 40, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 63, 64, 65, 66, 69, 70, 75, 76, 77, 78, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 105, 106, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855.


LINKS

Table of n, a(n) for n=1..66.
Ferenc Adorjan, Binary mapping of monotonic sequences  the Aronson and the CA functions
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton


PROG

(PARI) {ca_tr(ca, v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */
local(cav=vector(8), a, r=[], i, j, k, l, po, p=vector(3));
a=binary(min(255, ca)); k=matsize(a)[2]; forstep(i=k, 1,  1, cav[ki+1]=a[i]);
j=0; l=matsize(v)[2]; k=v[l]; po=1;
for(i=1, k+2, j*=2; po=isin(i, v, l, po); j=(j+max(0, sign(po)))% 8; if(cav[j+1], r=concat(r, i)));
return(r) /* See the function "isin" at A092875 */}


CROSSREFS

Cf. A092855, A051006, A093510, A093511, A093512, A093514, A093515, A093516, A093517.
Sequence in context: A090120 A129783 A301919 * A047230 A277138 A327282
Adjacent sequences: A093510 A093511 A093512 * A093514 A093515 A093516


KEYWORD

easy,nonn


AUTHOR

Ferenc Adorjan (fadorjan(AT)freemail.hu)


STATUS

approved



