

A093512


Transform of the prime sequence by the Rule73 cellular automaton.


7



1, 3, 4, 10, 16, 22, 26, 27, 28, 34, 35, 36, 40, 46, 50, 51, 52, 56, 57, 58, 64, 65, 66, 70, 76, 77, 78, 82, 86, 87, 88, 92, 93, 94, 95, 96, 100, 106, 112, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 130, 134, 135, 136, 142, 143, 144, 145, 146, 147, 148
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855.


LINKS

Table of n, a(n) for n=1..61.
Ferenc Adorjan, Binary mapping of monotonic sequences  the Aronson and the CA functions
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton


PROG

(PARI) {ca_tr(ca, v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */
local(cav=vector(8), a, r=[], i, j, k, l, po, p=vector(3));
a=binary(min(255, ca)); k=matsize(a)[2]; forstep(i=k, 1,  1, cav[ki+1]=a[i]);
j=0; l=matsize(v)[2]; k=v[l]; po=1;
for(i=1, k+2, j*=2; po=isin(i, v, l, po); j=(j+max(0, sign(po)))% 8; if(cav[j+1], r=concat(r, i)));
return(r) /* See the function "isin" at A092875 */}


CROSSREFS

Cf. A092855, A051006, A093510, A093511, A093513, A093514, A093515, A093516, A093517.
Sequence in context: A007007 A037952 A281903 * A081160 A051437 A224073
Adjacent sequences: A093509 A093510 A093511 * A093513 A093514 A093515


KEYWORD

easy,nonn


AUTHOR

Ferenc Adorjan (fadorjan(AT)freemail.hu)


STATUS

approved



