login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093510 Transform of the prime sequence by the Rule30 cellular automaton. 7
2, 3, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 29, 30, 32, 33, 37, 38, 39, 41, 42, 44, 45, 47, 48, 49, 53, 54, 55, 59, 60, 62, 63, 67, 68, 69, 71, 72, 74, 75, 79, 80, 81, 83, 84, 85, 89, 90, 91, 97, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 115 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855.

LINKS

Table of n, a(n) for n=1..67.

Ferenc Adorjan, Binary mapping of monotonic sequences - the Aronson and the CA functions

Eric Weisstein's World of Mathematics, Elementary Cellular Automaton

Eric Weisstein's World of Mathematics, Rule30 Elementary Cellular Automaton

PROG

(PARI) {ca_tr(ca, v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */

local(cav=vector(8), a, r=[], i, j, k, l, po, p=vector(3));

a=binary(min(255, ca)); k=matsize(a)[2]; forstep(i=k, 1, - 1, cav[k-i+1]=a[i]);

j=0; l=matsize(v)[2]; k=v[l]; po=1;

for(i=1, k+2, j*=2; po=isin(i, v, l, po); j=(j+max(0, sign(po)))% 8; if(cav[j+1], r=concat(r, i)));

return(r) /* See the function "isin" at A092875 */}

CROSSREFS

Cf. A092855, A051006, A093511, A093512, A093513, A093514, A093515, A093516, A093517.

Sequence in context: A084090 A047286 A201822 * A202341 A013948 A187478

Adjacent sequences:  A093507 A093508 A093509 * A093511 A093512 A093513

KEYWORD

easy,nonn

AUTHOR

Ferenc Adorjan (fadorjan(AT)freemail.hu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 16:37 EST 2020. Contains 331152 sequences. (Running on oeis4.)