

A093458


Mixed factorials. Define MF(n) as the product prime(1)*composite(1)*(prime(2)*composite(2)...prime(n/2)*composite(n/2) if n is even else MF(n) as the product prime(1)*composite(1)*(prime(2)*composite(2)*...*prime((n+1)/2). a(0)= 1.


1



1, 2, 8, 24, 144, 720, 5760, 40320, 362880, 3991680, 39916800, 518918400, 6227020800, 105859353600, 1482030950400, 28158588057600, 422378820864000, 9714712879872000, 155435406077952000, 4507626776260608000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Partial product of A073846.
a(n1) is the number of elements in the largest conjugacy class of A_n, the alternating group on n letters. Cf. A059171. [Geoffrey Critzer, Mar 26 2013]


LINKS

Table of n, a(n) for n=1..20.


MATHEMATICA

g[list_]:=Total[list]!/Apply[Times, list]/Apply[Times, Table[Count[list, n]!, {n, 1, 20}]]; f[list_]:=Apply[Plus, Table[Count[list, n], {n, 2, 20, 2}]]; Drop[Table[Max[Map[g, Select[Partitions[n], EvenQ[f[#]]&]]], {n, 1, 20}]] (* Geoffrey Critzer, Mar 26 2013 *)


CROSSREFS

Cf. A073846, A093459.
Sequence in context: A087982 A176475 A145238 * A242456 A088994 A214849
Adjacent sequences: A093455 A093456 A093457 * A093459 A093460 A093461


KEYWORD

less,nonn


AUTHOR

Amarnath Murthy, Apr 03 2004


EXTENSIONS

More terms from David Wasserman, Sep 28 2006


STATUS

approved



