|
|
A093437
|
|
a(n) = largest prime of the form n!/k! + 1.
|
|
3
|
|
|
2, 2, 3, 7, 13, 61, 31, 2521, 20161, 15121, 604801, 39916801, 3991681, 3113510401, 14529715201, 54486432001, 10461394944001, 59281238016001, 53353114214401, 2, 670442572801, 8515157028618240001, 9366672731480064001
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Is 19 the largest n such that a(n) = 2? There are none for 19 < n <= 600. - Robert Israel, Jan 16 2017
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..466
|
|
EXAMPLE
|
a(7) = 2521 because 7!/2! + 1 = 2521 is prime, whereas 7!/1! + 1 = 5041 = 71^2 is composite;
a(19) = 2 because the only prime of the form 19!/k! + 1 is 19!/19! + 1 = 2.
|
|
MAPLE
|
f:= proc(n) local k, x;
x:= n!;
for k from 2 do
if isprime(x+1) then return x+1 fi;
x:= x/k;
od
end proc:
map(f, [$0..40]); # Robert Israel, Jan 16 2017
|
|
CROSSREFS
|
Cf. A093621 (smallest k > 0 such that n!/k! + 1 is prime), A002981 (n! + 1 is prime), A088332 (primes of form n! + 1).
Sequence in context: A068524 A184841 A109277 * A075059 A060357 A064714
Adjacent sequences: A093434 A093435 A093436 * A093438 A093439 A093440
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amarnath Murthy, Apr 01 2004
|
|
EXTENSIONS
|
Corrected and extended by Hugo Pfoertner, Apr 06 2004
|
|
STATUS
|
approved
|
|
|
|