This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093432 a(n) = lcm_{k=1..n} (lcm(n,n-1,...,n-k+2,n-k+1)/lcm(1,2,...,k)). 3
 1, 2, 3, 12, 10, 30, 105, 280, 252, 1260, 2310, 4620, 4290, 6006, 15015, 240240, 680680, 6126120, 11639628, 2771340, 1763580, 19399380, 223092870, 178474296, 171609900, 743642900, 1434168450, 20078358300, 19409079690, 19409079690, 300840735195, 875173047840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..2363 EXAMPLE a(4) = lcm(lcm(4)/lcm(1), lcm(4,3)/lcm(1,2), lcm(4,3,2)/lcm(1,2,3), lcm(4,3,2,1)/lcm(1,2,3,4)) = lcm(4,6,2,1) = 12. MAPLE T:=(n, k)->lcm(seq(i, i=n-k+1..n))/lcm(seq(j, j=1..k)): seq(lcm(seq(T(n, k), k=1..n)), n=1..35); # Emeric Deutsch, Jan 30 2006 # second Maple program: b:= proc(n) option remember; `if`(n=1, 1, ilcm(b(n-1), n)) end: a:= proc(n) option remember; local k, r, s; r, s:= 1, 1;       for k to n do s:= ilcm(s, n-k+1); r:= ilcm(r, s/b(k)) od; r     end: seq(a(n), n=1..40);  # Alois P. Heinz, Mar 17 2018 MATHEMATICA b[n_] := b[n] = If[n == 1, 1, LCM[b[n - 1], n]]; a[n_] := a[n] = Module[{k, r = 1, s = 1}, For[k = 1, k <= n, k++, s = LCM[s, n - k + 1]; r = LCM[r, s/b[k]]]; r]; Array[a, 40] (* Jean-François Alcover, Jun 18 2018, after Alois P. Heinz *) CROSSREFS Cf. A093430, A093431, A093433. LCM of the terms in row n of the triangle in A093430. Sequence in context: A303221 A168059 A068550 * A212303 A100561 A081529 Adjacent sequences:  A093429 A093430 A093431 * A093433 A093434 A093435 KEYWORD nonn AUTHOR Amarnath Murthy, Mar 31 2004 EXTENSIONS Corrected and extended by Emeric Deutsch, Jan 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 08:49 EST 2019. Contains 329862 sequences. (Running on oeis4.)