login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093387 2^(n-1) - binomial(n, floor(n/2)). 8
0, 0, 1, 2, 6, 12, 29, 58, 130, 260, 562, 1124, 2380, 4760, 9949, 19898, 41226, 82452, 169766, 339532, 695860, 1391720, 2842226, 5684452, 11576916, 23153832, 47050564, 94101128, 190876696, 381753392, 773201629, 1546403258, 3128164186, 6256328372, 12642301534 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Suppose n >= 3. Let e_1,...,e_n be n unit-vectors which generate Euclidean space R_n and let l_n = {x= sum a_i e_i | a_1 >= a_2 >= ... >= a_n >= 0 }. Consider the hypercube H_n with vertices h_1,...,h_{2^n} = {epsilon_1 e_1+...+ epsilon_n e_n}.

For each element x in l_n we build 2^n "statements" by taking the inner product of x with h_i. We call a statement true if (x,h_i)>0 and false if (x,h_i)<0. Two vectors x and y are indistinguishable if all statements produced by x and y are equal.

For each set of indistinguishable vectors we chose one vector, which is called the representative. The sequence gives the number of representatives.

Hankel transform is A127365. - Paul Barry, Jan 11 2007

Number of up-steps starting at level 0 in all dispersed Dyck paths of length n-1 (that is, in Motzkin paths of length n-1 with no (1,0)-steps at positive heights). - Emeric Deutsch, May 30 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Matthijs Coster, Sequences

Matthijs Coster, Statements and Representatives, 2004.

FORMULA

a(n) = A000079(n-1)-A001405(n).

a(n+1) = sum{k=2..n, C(n,floor((n-k)/2)}; - Paul Barry, Jan 11 2007

a(2n) = 2*a(2n-1). - Emeric Deutsch, May 30 2011

a(n+1) = sum_{k>=0} k*A191310(n,k). - Emeric Deutsch, May 30 2011

G.f.: (1-sqrt(1-4*z^2))^2/(4*z*(1-2*z)). - Emeric Deutsch, May 30 2011

Conjecture: (n+1)*a(n) +2*(-n-1)*a(n-1) +4*(-n+2)*a(n-2) +8*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 30 2012

EXAMPLE

a(5)=6 because, denoting U=(1,1), D=(1,-1), H=(1,0), in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD we have 0+1+1+1+2+1=6 U steps starting at level 0. - Emeric Deutsch, May 30 2011

MAPLE

A093387:=n->2^(n-1)-binomial(n, floor(n/2)); seq(A093387(n), n=1..50); # Wesley Ivan Hurt, Dec 01 2013

MATHEMATICA

Table[2^(n - 1) - Binomial[n, Floor[n/2]], {n, 50}] (* Wesley Ivan Hurt, Dec 01 2013 *)

PROG

(PARI) a(n) = 2^(n-1) - binomial(n, n\2); \\ Michel Marcus, Aug 13 2013

CROSSREFS

Sequence in context: A183467 A057582 A094779 * A229487 A195166 A225646

Adjacent sequences:  A093384 A093385 A093386 * A093388 A093389 A093390

KEYWORD

nonn

AUTHOR

Matthijs Coster, Apr 29 2004

EXTENSIONS

Offset corrected, R. J. Mathar, Jun 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 31 21:07 EDT 2014. Contains 248871 sequences.