%I #16 Jan 28 2020 11:07:19
%S 1,8,27,64,100,199,390,753,1442,2784,5369,10348,19943,38444,74104,
%T 142839,275330,530717,1022990,1971876,3800913,7326496,14122275,
%U 27221560,52471244,101141575,194956654,375791033,724360506,1396249768,2691357961
%N Tetranacci numbers starting with first four cubes.
%H Harvey P. Dale, <a href="/A093322/b093322.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1).
%F a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4).
%F G.f.: x*(1 + 7*x + 18*x^2 + 28*x^3) / (1 - x - x^2 - x^3 - x^4). - _Colin Barker_, Jan 28 2020
%t a[1] = 1; a[2] = 8; a[3] = 27; a[4] = 64; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4]; Table[ a[n], {n, 31}] (* _Robert G. Wilson v_, May 11 2004 *)
%t LinearRecurrence[{1,1,1,1},Range[4]^3,40] (* _Harvey P. Dale_, Apr 18 2018 *)
%o (PARI) Vec(x*(1 + 7*x + 18*x^2 + 28*x^3) / (1 - x - x^2 - x^3 - x^4) + O(x^35)) \\ _Colin Barker_, Jan 28 2020
%Y Cf. A086213.
%K nonn,easy
%O 1,2
%A Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), May 11 2004
%E More terms from _Robert G. Wilson v_ and _Labos Elemer_, May 11 2004