login
A093160
Expansion of q^(-1/2) * (eta(q^4) / eta(q))^4 in powers of q.
19
1, 4, 14, 40, 101, 236, 518, 1080, 2162, 4180, 7840, 14328, 25591, 44776, 76918, 129952, 216240, 354864, 574958, 920600, 1457946, 2285452, 3548550, 5460592, 8332425, 12614088, 18953310, 28276968, 41904208, 61702876, 90304598
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed, 1895, p. 381, Section 488.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^4.
Expansion of q^(-1/2) * k / (4 * k') in powers of q where q is Jacobi's nome and k is the elliptic modulus.
Expansion of q^(-1/4) * k^(1/2) / (2 * (1 - k)) in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus.
Expansion of (psi(x^2) / phi(-x))^2 = (psi(x) / phi(-x^2))^4 = (psi(-x) / phi(-x))^4 = (psi(x^2) / psi(-x))^4 = (chi(x) / chi(-x^2)^2)^4 = ( chi(x) * chi(-x)^2)^-4 = (chi(-x) * chi(-x^2))^-4 = (f(-x^4) / f(-x))^4 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [ 4, 4, 4, 0, ...].
Given g.f. A(x), then B(x) = q * A(q^2) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2.
G.f. A(q) satisfies A(q) = sqrt(A(-q^2)) / (1 - 4*q*A(-q^2)); together with limit_{n->infinity} A(x^n) = 1 this gives a fast algorithm to compute the series. [Joerg Arndt, Aug 06 2011]
A001938(n) = (-1)^n * a(n). Convolution inverse of A112143.
a(n) ~ exp(sqrt(2*n)*Pi) / (32 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A046897(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 28 2017
EXAMPLE
G.f. = 1 + 4*x + 14*x^2 + 40*x^3 + 101*x^4 + 236*x^5 + 518*x^6 + 1080*x^7 + ...
G.f. = q + 4*q^3 + 14*q^5 + 40*q^7 + 101*q^9 + 236*q^11 + 518*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (Product[ 1 + x^k, {k, 2, n, 2}] / Product[ 1 - x^k, {k, 1, n, 2}])^4, {x, 0, n}];
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[m] / (4 Sqrt[1 - m]), {q, 0, n + 1/2}]];
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ m^(1/4) / (2 (1 - Sqrt @ m)), {q, 0, n/2 + 1/4 }]];
s = (QPochhammer[q^4]/QPochhammer[q])^4 + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
PROG
(PARI) {a(n) = my(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A2 = A * (1 + 16*A); A = 8*A2 + (1 + 32*A) * sqrt(A2)); polcoeff( sqrt(A/x), n))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^4, n))};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Mar 26 2004, Apr 17 2007
STATUS
approved