login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093086 "Fibonacci in digits": start with a(0)=0, a(1)=1; repeatedly adjoin the digits of the sum of the next two terms. 15
0, 1, 1, 2, 3, 5, 8, 1, 3, 9, 4, 1, 2, 1, 3, 5, 3, 3, 4, 8, 8, 6, 7, 1, 2, 1, 6, 1, 4, 1, 3, 8, 3, 3, 7, 7, 5, 5, 4, 1, 1, 1, 1, 6, 1, 0, 1, 4, 1, 2, 1, 0, 9, 5, 2, 2, 2, 7, 7, 1, 1, 5, 5, 3, 3, 1, 9, 1, 4, 7, 4, 4, 9, 1, 4, 8, 2, 6, 1, 0, 8, 6, 4, 1, 0, 1, 0, 5, 1, 1, 1, 1, 8, 1, 3, 1, 0, 5, 1, 2, 1, 0, 8, 7, 1, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Formally, define strings of digits S_i as follows. S_0={0}, S_1={0,1}. For n >= 1, let S_n={t_0, t_1, ..., t_z}. Then S_{n+1} is obtained by adjoining the digits of t_{n-1}+t_n to S_n. The sequence gives the limiting string S_oo.

All digits appear infinitely often, although the sequence is not periodic.

LINKS

Hakan Icoz, Table of n, a(n) for n = 0..20000

EXAMPLE

After S_6 = {0,1,1,2,3,5,8} we have 5+8 = 13, so we get

S_7 = {0,1,1,2,3,5,8,1,3}. Then 8+1 = 9, so we get

S_8 = {0,1,1,2,3,5,8,1,3,9}. Then 1+3 = 4, so we get

S_9 = {0,1,1,2,3,5,8,1,3,9,4}, and so on.

MAPLE

with(linalg): A:=matrix(1, 2, [0, 1]): for n from 1 to 100 do if A[1, n]+A[1, n+1]<10 then A:=concat(A, matrix(1, 1, A[1, n]+A[1, n+1])) else A:=concat(A, matrix(1, 2, [1, A[1, n]+A[1, n+1]-10])) fi od: matrix(A); # Emeric Deutsch, May 31 2005

CROSSREFS

Cf. A093087-A093098, A105967, A102085, A214365.

Sequence in context: A008963 A031324 A226251 * A093092 A031111 A089911

Adjacent sequences:  A093083 A093084 A093085 * A093087 A093088 A093089

KEYWORD

nonn,base,easy

AUTHOR

Bodo Zinser, Mar 20 2004

EXTENSIONS

Edited by N. J. A. Sloane, Mar 20 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 12:49 EDT 2022. Contains 357057 sequences. (Running on oeis4.)