

A093086


"Fibonacci in digits": start with a(0)=0, a(1)=1; repeatedly adjoin the digits of the sum of the next two terms.


15



0, 1, 1, 2, 3, 5, 8, 1, 3, 9, 4, 1, 2, 1, 3, 5, 3, 3, 4, 8, 8, 6, 7, 1, 2, 1, 6, 1, 4, 1, 3, 8, 3, 3, 7, 7, 5, 5, 4, 1, 1, 1, 1, 6, 1, 0, 1, 4, 1, 2, 1, 0, 9, 5, 2, 2, 2, 7, 7, 1, 1, 5, 5, 3, 3, 1, 9, 1, 4, 7, 4, 4, 9, 1, 4, 8, 2, 6, 1, 0, 8, 6, 4, 1, 0, 1, 0, 5, 1, 1, 1, 1, 8, 1, 3, 1, 0, 5, 1, 2, 1, 0, 8, 7, 1, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Formally, define strings of digits S_i as follows. S_0={0}, S_1={0,1}. For n >= 1, let S_n={t_0, t_1, ..., t_z}. Then S_{n+1} is obtained by adjoining the digits of t_{n1}+t_n to S_n. The sequence gives the limiting string S_oo.
All digits appear infinitely often, although the sequence is not periodic.


LINKS

Hakan Icoz, Table of n, a(n) for n = 0..20000


EXAMPLE

After S_6 = {0,1,1,2,3,5,8} we have 5+8 = 13, so we get
S_7 = {0,1,1,2,3,5,8,1,3}. Then 8+1 = 9, so we get
S_8 = {0,1,1,2,3,5,8,1,3,9}. Then 1+3 = 4, so we get
S_9 = {0,1,1,2,3,5,8,1,3,9,4}, and so on.


MAPLE

with(linalg): A:=matrix(1, 2, [0, 1]): for n from 1 to 100 do if A[1, n]+A[1, n+1]<10 then A:=concat(A, matrix(1, 1, A[1, n]+A[1, n+1])) else A:=concat(A, matrix(1, 2, [1, A[1, n]+A[1, n+1]10])) fi od: matrix(A); # Emeric Deutsch, May 31 2005


CROSSREFS

Cf. A093087A093098, A105967, A102085, A214365.
Sequence in context: A008963 A031324 A226251 * A093092 A031111 A089911
Adjacent sequences: A093083 A093084 A093085 * A093087 A093088 A093089


KEYWORD

nonn,base,easy


AUTHOR

Bodo Zinser, Mar 20 2004


EXTENSIONS

Edited by N. J. A. Sloane, Mar 20 2010


STATUS

approved



