login
Decimal expansion of a constant x such that the n-th partial quotient of the continued fraction of x equals floor(2^n*x), for n>=0.
1

%I #3 Mar 30 2012 18:36:40

%S 1,4,5,5,2,8,1,6,9,2,8,3,2,9,7,1,0,5,1,3,9,3,0,3,4,4,4,4,5,2,4,5,8,9,

%T 6,9,9,2,7,1,2,1,3,7,7,7,8,2,5,5,5,4,7,7,4,1,3,2,0,7,0,9,4,5,7,4,2,1,

%U 6,7,1,0,2,2,3,4,9,6,6,1,7,7,2,2,9,6,4,5,4,2,1,3,2,6,1,0,7,3,3,2,7,9,6,0,0

%N Decimal expansion of a constant x such that the n-th partial quotient of the continued fraction of x equals floor(2^n*x), for n>=0.

%C Continued fraction expansion is given by A093053.

%e x=1.455281692832971051393034444524589699271213777825554774132070945742167...

%e x=[1;2,5,11,23,46,93,186,372,745,1490,2980,5960,...,floor(2^n*x),...].

%Y Cf. A093053.

%K cons,nonn

%O 1,2

%A _Paul D. Hanna_, Mar 16 2004