login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093039
Sequence resulting from a sum of three repeated binomial(n+3,4) sequences.
1
1, 2, 7, 11, 25, 35, 65, 85, 140, 175, 266, 322, 462, 546, 750, 870, 1155, 1320, 1705, 1925, 2431, 2717, 3367, 3731, 4550, 5005, 6020, 6580, 7820, 8500, 9996, 10812, 12597, 13566, 15675, 16815, 19285, 20615, 23485, 25025, 28336, 30107, 33902
OFFSET
1,2
COMMENTS
Euler transform of length 3 sequence [2,k,-1] with k=4 (cf. A028724 for k=3). - Georg Fischer, Nov 28 2020
FORMULA
a(1) = b(1), a(2) = b(2), a(n) = b(n) + b(n-1) + b(n-2) for n > 2, where k = 4 and b(n) = binomial(floor((n+7)/2), k) = A189976(n-7).
EXAMPLE
b(n) = 1, 1, 5, 5, 15, 15, 35, 35, 70, 70,126,126
+ 0, 1, 1, 5, 5, 15, 15, 35, 35, 70, 70,126
+ 0, 0, 1, 1, 5, 5, 15, 15, 35, 35, 70, 70
-----------------------------------------------
a(n) = 1, 2, 7, 11, 25, 35, 65, 85,140,175,266,322
MATHEMATICA
k := 4; nmax := 32; a := Flatten[Table[{Binomial[n, k], Binomial[n, k]}, {n, k, nmax}]];
a + Flatten[Join[{0}, Drop[a, -1]]] + Flatten[Join[{0, 0}, Drop[a, -2]]] (* Georg Fischer, Nov 29 2020 *)
CROSSREFS
Cf. A001651(k=1), A001318(k=2), A028724(k=3).
Cf. repeated binomial coefficients: A008805(k=2), A058187(k=3), A189976(k=4).
Sequence in context: A075356 A235355 A103184 * A201630 A023862 A024479
KEYWORD
nonn,easy
AUTHOR
Alford Arnold, May 08 2004
EXTENSIONS
More terms from and edited by Georg Fischer, Nov 28 2020
STATUS
approved