login
A092961
Least k such that (k-1)/n and k*n + 1 both are primes.
3
4, 5, 10, 9, 26, 13, 78, 17, 64, 21, 56, 61, 40, 239, 46, 81, 290, 55, 58, 41, 148, 45, 162, 73, 76, 131, 136, 57, 320, 61, 528, 65, 100, 69, 666, 253, 186, 77, 118, 681, 206, 85, 130, 89, 136, 231, 236, 97, 148, 101, 562, 885, 372, 163, 606, 113, 628, 175, 650, 181
OFFSET
1,1
COMMENTS
Obviously a(n) is odd or even as n is even or odd.
LINKS
EXAMPLE
a(4) = 9 as (9-1)/4 = 2 and 9*4 + 1 = 37 both are primes.
a(9) = 64, (64-1)/9 = 7 and 64*9 + 1 = 577 both are primes.
MATHEMATICA
bp[n_]:=Module[{k=2n+1}, While[!PrimeQ[(k-1)/n]||!PrimeQ[k*n+1], k++]; k]; Array[bp, 60] (* Harvey P. Dale, Feb 23 2014 *)
PROG
(PARI) a(n)=for(i=1, 10+n^3, if(Mod(i-1, n)==0 && isprime((i-1)/n) && isprime(i*n+1), return(i)))
CROSSREFS
Sequence in context: A060648 A263828 A327577 * A327614 A177711 A115945
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Mar 25 2004
EXTENSIONS
More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
STATUS
approved