%I
%S 2,3,3,3,3,3,3,7,3,5,3,3,3,3,5,3,5,13,3,3,7,7,3,5,3,3,7,3,7,3,3,5,3,7,
%T 5,19,3,13,3,29,5,3,3,3,5,19,3,3,5,19,3,11,3,3,5,3,17,19,7,5,3,17,7,3,
%U 7,3,3,13,3,7,5,17,7,3,7,5,5,7,5,7,11,3,3,3,19,3,11,3,3,7,5,5,3,5,7,23,5,3
%N a(n) = least prime p such that 2*prime(n)  p is prime.
%C a(n) = least prime p such that prime(n) = (p+q)/2, where q is also prime.
%C a(n) <= prime(n). Conjecture: a(n) = prime(n) only for n = 1 and 2.
%H Robert Israel, <a href="/A092938/b092938.txt">Table of n, a(n) for n = 1..10000</a>
%e 2*prime(8) = 38; 38  2 = 36, 38  3 = 35, 38  5 = 33 are composite, but 38  7 = 31 is prime. Hence a(8) = 7.
%p f:= proc(n) local pn,p;
%p pn:= ithprime(n);
%p p:= 1;
%p do
%p p:= nextprime(p);
%p if isprime(2*pnp) then return p fi
%p od
%p end proc:
%p map(f, [$1..100]); # _Robert Israel_, Jul 31 2020
%o (PARI) {for(n=1, 98, k=2*prime(n); p=2; while(!isprime(kp), p=nextprime(p+1)); print1(p,","))} \\ _Klaus Brockhaus_, Dec 23 2006
%Y Cf. A092939, A092940, A116619.
%K nonn
%O 1,1
%A _Amarnath Murthy_, Mar 23 2004
%E Edited and extended by _Klaus Brockhaus_, Dec 23 2006
