login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092924 Expansion of a Schwarzian ({f_{32|8}, tau} / (4*Pi)^2) in powers of q^8. 0
1, -1008, 8304, -28224, 66672, -127008, 232512, -346752, 533616, -763056, 1046304, -1342656, 1866816, -2215584, 2856576, -3556224, 4269168, -4953312, 6286128, -6914880, 8400672, -9709056, 11060928, -12265344, 14941248, -15877008, 18252192, -20603520, 22935168, -24585120 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The q-series f_{32|8} is the g.f. for A082303. This is given on page 274 of McKay and Sebbar along with equation (8.1) which gives an expression for the g.f. A(q) of this sequence. - Michael Somos, Aug 15 2014

LINKS

Table of n, a(n) for n=0..29.

J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.

FORMULA

Expansion of (21 * E_4(-q) - 16 * E_4(q^2)) / 5 in powers of q. [McKay and Sebbar, equation (8.1)] - Michael Somos, Aug 15 2014

G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 16 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 15 2014

EXAMPLE

G.f. = 1 - 1008*x + 8304*x^2 - 28224*x^3 + 66672*x^4 - 127008*x^5 + 232512*x^6 + ...

G.f. = 1 - 1008*q^8 + 8304*q^16 - 28224*q^24 + 66672*q^32 - 127008*q^40 + ...

PROG

(Sage) A = ModularForms( Gamma0(8), 4, prec=32) . basis(); A[1] - 1008*A[2] + 8304*A[3] + 66672*A[4]; # Michael Somos, Aug 15 2014

CROSSREFS

Cf. A062248, A082303.

Sequence in context: A241932 A160451 A254973 * A187863 A145235 A210759

Adjacent sequences:  A092921 A092922 A092923 * A092925 A092926 A092927

KEYWORD

sign

AUTHOR

John McKay (mckay(AT)cs.concordia.ca), Apr 18 2004

EXTENSIONS

More terms from Michael Somos, Aug 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 23:08 EST 2016. Contains 278900 sequences.