login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092896 Related to random walks on the 4-cube. 4
1, 1, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417, 70368744177665, 281474976710657 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Gives the denominators in the probability that a random walk on the 4-cube returns to its starting corner on the 2n-th step. Partial sums of A092898. Binomial transform of A092897.

Palindromic numbers in base 2 with an odd number of bits that can be written as 2^(2n) + 1, n>=1. Palindromic numbers in base 2 with an even number of bits that can be written as 2^(2n+1) + 1 are A087289. - Brad Clardy, Feb 18 2014.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

M. Kac, Random walk and the theory of Brownian motion, Amer. Math. Monthly, 54:369-391, 1947.

Richard M. Low and Ardak Kapbasov, Non-Attacking Bishop and King Positions on Regular and Cylindrical Chessboards, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.1, Table 13.

Index entries for linear recurrences with constant coefficients, signature (5,-4).

FORMULA

G.f.: (1-4*x+4*x^2-4*x^3)/((1-x)*(1-4*x)).

a(n) = 1+4^n/4-0^n/4+Sum_{k=0..n} binomial(n, k)*k*(-1)^k.

a(n+1) = 4^n+1-0^n=A002450(n+1)-4*A002450(n-1). - Paul Barry, Mar 13 2008

a(n) = A052539(n-1), n>1. - R. J. Mathar, Sep 08 2008

Dropping a(0) and interleaving the terms with zeros gives a sequence with e.g.f. [sin(5ix/2)/sin(ix/2) - 3]/2 = cos(2ix) + cos(ix) - 1 . Similar expressions apply to A091775 and A074515, which are also power sums representable by the Bernoulli polynomials. - Tom Copeland, Oct 22 2008

a(n) = 4^(n-1) + 1 for n>1. - Colin Barker, Nov 25 2016

MATHEMATICA

CoefficientList[Series[(1 - 4 x + 4 x^2 - 4 x^3)/((1 - x)(1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 20 2014 *)

LinearRecurrence[{5, -4}, {1, 1, 5, 17}, 30] (* Harvey P. Dale, Mar 19 2016 *)

PROG

(PARI) Vec((1-4*x+4*x^2-4*x^3)/((1-x)*(1-4*x)) + O(x^30)) \\ Colin Barker, Nov 25 2016

CROSSREFS

Cf. A066443, A087289.

Sequence in context: A149672 A149673 A046231 * A149674 A149675 A149676

Adjacent sequences:  A092893 A092894 A092895 * A092897 A092898 A092899

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Mar 12 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 16:32 EDT 2019. Contains 321470 sequences. (Running on oeis4.)