login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092868 Coefficients c[r,n] in Schmidt's problem Sum[Binomial[n,k]^r Binomial[n+k,k]^r,{k,0,n}] == Sum[Binomial[n,k]Binomial[n+k,k]c[r,k],{k,0,n}] for r=4. 2
1, 8, 424, 48896, 6672232, 1022309408, 176808084544, 33055112886272, 6507475475389288, 1336577286762538496, 284198765977135568224, 62135041920796512325952, 13901968841738902540019776 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..12.

Eric Weisstein's World of Mathematics, Schmidt's Problem

Vaclav Kotesovec, Recurrence (of order 9)

FORMULA

a(n) ~ sqrt(3) * 2^(5*n+6) * 3^(2*n+3) / (17^(5/2) * Pi^3 * n^3). - Vaclav Kotesovec, Mar 09 2014

MATHEMATICA

c[4, n_] := Sum[Binomial[2j, j]^3Binomial[n, j]Binomial[k+j, k-j]Binomial[j, n-k]Binomial[k, j]Binomial[2j, k-j], {k, 0, n}, {j, 0, n}]

CROSSREFS

Cf. A000172, A000658.

Fourth row of array A094424.

Sequence in context: A185833 A301668 A038781 * A038782 A209821 A024110

Adjacent sequences:  A092865 A092866 A092867 * A092869 A092870 A092871

KEYWORD

nonn

AUTHOR

Eric W. Weisstein, Mar 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 13:00 EDT 2019. Contains 327131 sequences. (Running on oeis4.)