

A092857


Representation of 1/sqrt(2*Pi) by an infinite sequence.


8



2, 3, 6, 7, 11, 16, 20, 22, 25, 26, 29, 30, 31, 32, 34, 36, 41, 42, 44, 45, 48, 50, 55, 59, 60, 62, 67, 68, 69, 70, 71, 72, 75, 77, 78, 81, 82, 83, 84, 88, 90, 99, 101, 102, 103, 105, 107, 109, 110, 111, 115, 116, 117, 121, 123, 124, 125, 126, 127, 128, 129, 130, 132, 135
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Any real number in the range (0,1), having infinite number of nonzero binary digits, can be represented by a monotonic infinite sequence, such a way that: n is in the sequence iff the nth digit in the fraction part of the number is 1. See also A092855.
An example for the inverse mapping is A051006.


LINKS

Table of n, a(n) for n=1..64.
Ferenc Adorjan, Binary mapping of monotonic sequences and the Aronson function


PROG

(PARI) {/* mtinv(x)= /*Returns the inverse binary mapping of x into a monotonic sequence */ local(z, v=[], r=[], l); z=frac(x); v=binary(z)[2]; l=matsize(v)[2]; for(i=1, l, if(v[i]==1, r=concat(r, i))); return(r)} }


CROSSREFS

Cf. A051006, A092855.
Sequence in context: A179019 A096578 A027754 * A062404 A032875 A032842
Adjacent sequences: A092854 A092855 A092856 * A092858 A092859 A092860


KEYWORD

easy,nonn


AUTHOR

Ferenc Adorjan (fadorjan(AT)freemail.hu)


STATUS

approved



