login
A092841
Numerator of I(n) = Integral_{x=0..1/(4^n)} (1-sqrt(x))^2 dx; e.g., I(3) = 323/24576. The denominator is b(n) = 96*16^(n-1); e.g., b(3) = 24576.
0
1, 11, 67, 323, 1411, 5891, 24067, 97283, 391171, 1568771, 6283267, 25149443, 100630531, 402587651, 1610481667, 6442188803, 25769279491, 103078166531, 412314763267, 1649263247363, 6597061378051, 26388262289411
OFFSET
0,2
FORMULA
Empirical g.f.: (1 + 4*x + 4*x^2)/(1 - 7*x + 14*x^2 - 8*x^3). [Colin Barker, Jan 01 2012]
MAPLE
J:=n->int((1-sqrt(x))^2, x=0..1/4^n): seq(numer(J(n)), n=0..25); # Emeric Deutsch, Feb 23 2005
CROSSREFS
Sequence in context: A258479 A035041 A125591 * A165673 A220511 A287169
KEYWORD
nonn,frac,easy
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Apr 15 2004
EXTENSIONS
More terms from Emeric Deutsch, Feb 23 2005
STATUS
approved